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Abstract: A novel highly efficient and general route to
various 3- and 5-substituted 2-alkoxystyrenes, required for
the preparation of Hoveyda-Grubbs catalysts, is described.

Over the past few years, the olefin metathesis has been
applied with increased frequency in organic chemistry.
The tremendous success of this transformation is largely
due to discovery of active, well-defined first-generation
((PCy3)2Cl2RudCHPh, 1) and second-generation (2) ru-
thenium alkylidene complexes, which combine high cata-
lytic activity with almost ideal functional group toler-
ance.1 The chromatography-stable phosphane-free com-
plex 3, described by Hoveyda et al.,2-4 initiates more
slowly than the highly active Grubbs' benzylidene 2.5
Recently, we have described the similarly stable and
reusable catalyst 4, prepared from an inexpensive R-asa-

rone.6 Despite lower initiation activities, the use of cata-
lysts 3 and 4 was proved to be advantageous in many
cases, particularly in reactions of electron-deficient ole-
fins.7

Recently, Wakamatsu and Blechert8 have shown that
the complex 5, substituted ortho to the chelating isopro-
poxy ligand, initiates dramatically faster than the parent
catalyst 3, while retaining the excellent air and moisture
stability. Our group has recently introduced the stable
5-nitro-substituted analogue 6, which was shown to
exhibit impressive activity in ring-closing (RCM), cross
(CM), and enyne metathesis.10 As a result, this highly
active catalyst has found a successful application in
target-oriented syntheses.10c-e The higher activity of 5
may be the result of faster initiation of the catalytic cycle
as a result of a more facile release of the sterically
demanding phenyl-substituted benzylidene.9,10 Similarly,
the electron-withdrawing NO2 para to the ligating i-PrO
in 6 would weaken O f Ru chelation and facilitate faster
initiation of the catalytic cycle.10

To explore the synthetic potential of 5 and 6 and to
study structure-activity relationships in Hoveyda-type
complexes 5-8 (Scheme 2), a simple and general syn-
thetic route to various 3- and 5-substituted 2-alkoxysty-
renes was required.11 The described preparation of
5-nitro-2-isopropoxystyrene, a substrate for 6, consists
of alkylation of the commercially available 2-hydroxy-5-
nitrobenzaldehyde followed by Wittig reaction (49%
overall yield).10 The latter transformation is not practical
for larger scale operations as it requires column chro-
matography to remove the triphenyl phosphine oxide
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byproduct. Similarly, the optimized preparation of a
starting material for 5 consists of five steps, starting from
2-hydroxybiphenylsodium salt (Kolbe-Schmitt reaction,
alkylation with 12 equiv of i-PrBr, LAH reduction, MnO2

oxidation, and Wittig olefination) and gives the required
2-isopropoxy-3-phenylstyrene with 16% overall yield.8b

Therefore, we were encouraged to develop a more step-
and atom-economic method that minimizes the use of
large amounts of solvents and expensive reagents.

Herewith, we present a general route to various 3- and
5-substituted Hoveyda-type complexes 3-8, including the
highly reactive 5 and 6, which rely on solvent-free Claisen
rearrangement and catalytic C-C double bond isomer-
ization as key steps.12

Our synthesis of 58 begins from inexpensive 2-hydroxy-
biphenyl 8a, which is readily allylated using allyl bro-
mide and solid K2CO3 to give the aryl ether 9a in 93%
yield (Scheme 3). The crude product 9a was then sub-
jected to a rearrangement.13 The Claisen rearrangement
was achieved by heating neat 9a at 190-195 °C. The
reaction proceeded smoothly to give 10a in 86% yield.

The isomerization of 10a to 11a was then tested. From
many isomerization protocols known,14 the reaction
catalyzed by 3 mol % rhodium trichloride/p-TsOH‚H2O
in 90% aqueous EtOH gave the best results in terms of
both selectivity and yield.15 Finally, the alkylation of 11a
was carried out with i-PrI in DMF, using K2CO3 and a
catalytic amount of Cs2CO3, yielding the catalyst 5
precursor 12a in 88% yield after a final chromatographic
purification (Scheme 3). The styrene 12b, a precursor for
the highly active NO2-substituted catalyst10 6 can be
obtained with similar efficiency using the same protocol.
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(d) De Koning, C. B.; Green, I. R.; Michael, J. P.; Oliveira, J. R.
Tetrahedron 2001, 57, 9623-9634.

(14) Several homogeneous and supported catalysts for a C-C double
bond isomerization are known, including: (a) RhCl3‚nH2O and poly-
styrene-supported RhCl3: Setty-Fichman, M.; Blum. J.; Sasson, Y.
Tetrahedron Lett. 1994, 35, 781-784. (b) Felkin’s iridium catalyst:
Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem.
Commun. 1978, 694-695. (c) Polymer-supported: Wilkinson’s catalyst,
[(COD)IrCl]2 and 2-tert-butylimino-2-diethylamino-1,3-dimethyl per-
hydro-1,3,2-diazaphosphorine (PS-BEMP); see ref 13a. (d) RuClH(CO)-
(PPh3)3: Krompiec, S.; Kuznik, N.; Bieg, T.; Adamus, B.; Majnusz, J.;
Grymel, M. Polish J. Chem. 2000, 74, 1197-1200. Krompiec, S.;
Pigulla, M.; Szczepankiewicz, W.; Bieg, T.; Kuznik, N.; Leszczynska-
Sejda, K.; Kubicki, M.; Borowiak, T. Tetrahedron Lett. 2001, 42, 7095-
7098. (e) For recent examples of aryl-allyls isomerization using t-BuOK,
see: ref 13c,d. (f) For a RuClH(CO)(PPh3)3 isomerization of structurally
related 2-isopropoxyallylbenzenes, see: van Otterlo, W. A. L.; Pathak,
R.; de Koning, C. B. Synlett 2003, 1859-1861.
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SCHEME 1. Family of Modern Ruthenium
Catalysts for Alkene Metathesisa

a Cy ) cyclohexyl; Mes ) 2,4,6-trimethyl phenyl

SCHEME 2. Selected Other Ortho- and
Para-Substituted Hoveyda-Grubbs Carbenes

SCHEME 3. Preparation of Catalysts 5 and 6
Precursorsa

a Isolated yields. Reagents: (a) Cs2CO3 (cat.), K2CO3, allyl
bromide, DMF, 40 °C, 1 day or NaOH, K2CO3, allyl bromide,
acetone-water, 45 °C, 1 day; (b) 195 °C, 6 h; (c) RhCl3‚3H2O (cat.),
p-TsOH‚H2O (cat.), 90% aq EtOH, reflux, 5 h; (d) K2CO3, Cs2CO3
(cat.), i-PrI, DMF, 40 °C, 1-2 days.
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However, the electron-poor aryl-ether 9b was substan-
tially less prone to rearrangement (Scheme 3).16,17

To show the general applicability of our Claisen rear-
rangement-isomerization procedure, other representa-
tive styrenes 12c-e, precursors for the benzylidene-
modified (7a, 8) and supported (7b)18 catalysts, were
prepared (Scheme 4). In this case, isomerizations of aryl
ethers (11c-e) also proceeded smoothly, with even higher
trans selectivity.

Nishida and co-workers recently reported that several
substrates can be isomerized using a catalyst formed in
situ from Grubbs’ benzylidene 2 and vinyloxytrimethyl-
silane.19 We have checked that this system can be used
for isomerization of the 2-isopropoxy-allylbenzene 11d
(Scheme 4).20

Having the required precursors in hand we attempted
the catalyst preparation, using the standard ligand
exchange-metathesis procedure.2b Treatment of 12a-e

with 2 in CH2Cl2 at 40-45 °C in the presence of CuCl as
a phosphane scavenger gave catalysts 3-8 in good to
excellent yields (Scheme 5). In the case of ortho-
substituted catalyst 5, 2 equiv of styrene 12a was
required to achieve good yield. It was also observed that
more electron-rich catalysts (Scheme 5, reactions 12d f
3, 12c f 7a, and 13 f 4) can be obtained in higher yields
as compared with sterically or electronically altered 5,
6, and 8. Complexes 3-8 displayed the expected activities
in a set of benchmark metathesis reactions, and their
analytical data are in full agreement with those pub-
lished in the literature.2,6,8,10,18

In summary, we have developed an efficient and
general synthetic route, based on a solvent-free Claisen
rearrangement and catalytic isomerization, which allows
various catalyst precursors to be readily prepared in
multigram quantities. This protocol can be used in
preparation of highly active ortho- and para-substituted
catalysts 5 and 6 and their chiral analogues, as well as
parent Hoveyda-Grubbs carbene 3 and other sys-
tems.11,21
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SCHEME 4. Preparation of Catalysts 3, 7a, and 8
Precursorsa

a Isolated yields. Reagents: (a) K2CO3, Cs2CO3 (cat.), allyl
bromide, DMF, 65-70 °C, 5 h or NaOH, K2CO3, allyl bromide,
acetone-water, 45 °C, 1 day; (b) 195 °C, 6 h; (c) K2CO3, Cs2CO3
(cat.), i-PrI, DMF, 40 °C, 1-2 days or NaOH, K2CO3, i-PrI or
Me2SO4, acetone-water, 45 °C, 20 h; (d) RhCl3‚3H2O (cat.),
p-TsOH‚H2O (cat.), 90% aq EtOH, reflux, 5 h. b2-Allylphenol (10d)
was used as received from Fluka AG. cRuthenium isomerization
conditions: CH2dCHOTMS, 2 (cat.), CH2Cl2, 35 °C, 24 h (66%).
d10b was used as a substrate.

SCHEME 5. Preparation of Catalysts 3-6, 7a,
and 8a

a Isolated yields. Reagents: (a) 2, CuCl, CH2Cl2, 40-45 °C, 45-
60 min. bTwo equivalents of 12a was used.
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